Integrated Freewheels FXR …
for bolting to the face
with sprag lift-off X and torque limiting

Application as

- **Backstop**

 for continuous conveyor installations with multiple drives in which each drive is equipped with a backstop.

Features

Integrated Freewheels FXR … are sprag freewheels without bearing support and with sprag lift-off X. They consist of the Integrated Freewheels FXM (refer to pages 60 to 65) with additional torque limiter.

The sprag lift-off X ensures a wear-free freewheeling operation when the inner ring rotates at high speed.

In continuous conveyor installations with multiple drives it is important to consider the problem of the unequal distribution of backdriving torque to the individual drives and backstops. As soon as the installation comes to a standstill, the entire backdriving torque is applied primarily to a single backstop, due to differences in the play and elasticity of the drives involved. In installations equipped with backstops without torque limiters, the individual gearboxes and the corresponding backstops must be designed to accommodate the entire backdriving torque of the conveyor installation in order to ensure safety.

The problem of the unequal distribution of backdriving torque is solved by using backstops FXR … with torque limiting. The torque limiter which is built into the backstop slips temporarily when the specified torque is exceeded until the other backstops engage in succession. In this way, the entire backdriving torque of the conveyor installation is distributed to the individual gearboxes and backstops. Furthermore, dynamic peak torques which occur during the locking process are reduced, thereby protecting the gearboxes against damaging peak torques. For this reason the use of backstops FXR … with torque limiting in continuous conveyor installations with multiple drives enables the application of gearboxes with smaller dimensions.

Advantages

- Protection of gearboxes from overload by unequal load distribution in multiple drives
- Protection of gearboxes from dynamic peak torques during the locking process
- Smaller gearboxes can be used without negatively effecting the safety
- Protection of the backstops, as dynamic peak torques are reduced by temporarily slipping
Integrated Freewheels FXR …
for bolting to the face
with sprag lift-off X and torque limiting

Integrated Freewheels FXRW and FXRV with torque limiting and without release function
This series of backstops with torque limiting is the basic version. The design and the available standard sizes are shown on page 70 and 72.

Integrated Freewheels FXRU and FXRT with torque limiting and with release function
This series is designed in the same way as series FXRW or FXRV; as an addition, a finely controllable release function is built in. The design, the description of the release function and the available standard sizes are shown on page 71 and 73.

Selection torque
The following determination of the selection torque applies to multiple-drives installations in which each drive has the same motor power. Please contact us in case of different motor powers.
If the backdriving torque M_L per drive is known, then the selection torque M_A for the particular backstop should be determined as follows:

$$M_A = 1.2 \cdot M_L \text{ [Nm]}$$

If, however, only the nominal power per drive P_0 [kW] is known, then this applies:

$$M_A = 1.2 \cdot 9550 \cdot F^2 \cdot \frac{P_0}{n_{SP}} \text{ [Nm]}$$

In these equations:

- M_A = Selection torque of the particular backstop [Nm]
- $M_L = 9550 \cdot F \cdot P_0/n_{SP}$ [Nm] = Static backdriving torque of the load for each drive referring to the particular backstop shaft [Nm]
- F = Selection factor
- $n_{SP} = $ Speed of backstop shaft [min$^{-1}$]

After calculating M_A, the size of the particular backstop must be selected in accordance with the catalogue tables in such a way that in all cases this applies:

$$M_R \leq M_A$$

M_R = Maximum slipping torque of the particular backstop in accordance with the table values on pages 70 to 73 [Nm]

Approximate values for F:

<table>
<thead>
<tr>
<th>Type of installation</th>
<th>F</th>
<th>F^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conveyor belt, angle up to 6°</td>
<td>0.71</td>
<td>0.50</td>
</tr>
<tr>
<td>Conveyor belt, angle up to 8°</td>
<td>0.78</td>
<td>0.61</td>
</tr>
<tr>
<td>Conveyor belt, angle up to 10°</td>
<td>0.83</td>
<td>0.69</td>
</tr>
<tr>
<td>Conveyor belt, angle up to 12°</td>
<td>0.86</td>
<td>0.74</td>
</tr>
<tr>
<td>Conveyor belt, angle up to 15°</td>
<td>0.89</td>
<td>0.79</td>
</tr>
<tr>
<td>Screw pumps</td>
<td>0.93</td>
<td>0.87</td>
</tr>
<tr>
<td>Ball mills, drying drums</td>
<td>0.85</td>
<td>0.72</td>
</tr>
<tr>
<td>Bucket conveyors, elevators</td>
<td>0.92</td>
<td>0.85</td>
</tr>
<tr>
<td>Hammer mills</td>
<td>0.93</td>
<td>0.87</td>
</tr>
</tbody>
</table>

In each case, the sum of the slipping torques of the particular backstops must be 1.2 times higher than the static backdriving torque of the installation (also at overload). The torques specified in the tables are maximum values. Lower values can be set upon request. If in doubt, please contact us stating the precise description of the installation and the operating conditions. It is preferable to use the questionnaire on page 112.

Example
Dual-drive system
Motor power per drive: $P_0 = 630$ kW
Type of installation:
Conveyor belt with 8° incline => $F^2 = 0.61$
Speed per backstop shaft:
$n_{SP} = 360$ min$^{-1}$
Selection torque of the particular backstop:

$$M_A = 1.2 \cdot 9550 \cdot 0.61 \cdot 630 / 360 \text{ [Nm]}$$

$$M_A = 12234 \text{ Nm}$$
The following rule applies in all cases:

$$M_R \geq M_A$$

$=>$ FXRU or FXRW 140 - 63 MX are the suitable, economical backstop sizes.
Integrated Freewheels FXRT

for bolting to the face
with sprag lift-off X, torque limiting and release function

Torques

The Integrated Freewheels FXRT are supplied with a set slipping torque \(M_R \) of the torque limiter. The static backdriving torque \(M_L \) of the installation (also in the case of an overload) must under no circumstances exceed the sum of the slipping torques \(M_R \) of the provided Integrated Freewheels. The slipping torques \(M_R \) specified in the table are maximum values; lower values can be set.

Mounting

The Integrated Freewheels FXRT are without bearing support, therefore it must be ensured that the run out (T.I.R.) between the pilot diameter \(R \) and the shaft diameter \(d \) does not exceed the value 0,25 mm.

Dimension C applies for the Integrated Freewheel. The centering depth of the customer attachment part must be at least C + 0,2 mm. The tolerance of the pilot diameter \(R \) of the attachment part must be ISO H7.

The tolerance of the shaft must be ISO h6 or j6.

Release function

The finely controllable release function consists basically of three special screws (2) that are located in the spring pocket (1) and the safety tabs (3). To release the backstop, first of all the special screws have to be unscrewed slightly. Then the cylinder screws (4) and the safety tabs have to be removed. The special screws can then be tightened, whereupon, with the aid of the bellows spring set (5) the release procedure is finely initiated.

Integrated Freewheels FXRT

Freewheel Size	Type	Slipping torque \(M_R \) \(\text{Nm} \)	Sprag lift-off at inner ring speed \(\text{min}^{-1} \)	Max. speed \(\text{min}^{-1} \)	Bore \(\text{mm} \)	A \(\text{mm} \)	B \(\text{mm} \)	C \(\text{mm} \)	D \(\text{mm} \)	G**	H \(\text{mm} \)	K \(\text{mm} \)	L \(\text{mm} \)	O \(\text{mm} \)	R \(\text{mm} \)	S \(\text{mm} \)	T \(\text{mm} \)	U***	V \(\text{mm} \)	Z**	Weight \(\text{kg} \)		
FXRT 85 - 40	MX	1.400	430	6000	60	65	330	148	6	295	M12	37	29	60	127	280	110	308	165	215	43	6	60
FXRT 100 - 50	MX	2.300	400	4500	70	80	350	159	6	311	M12	39	31	70	134	300	125	328	180	240	38	6	66
FXRT 120 - 50	MX	3.400	320	4000	80	95	400	159	6	360	M16	36	31	70	134	340	145	373	200	260	38	6	87
FXRT 140 - 50	MX	4.500	320	3000	110	110	430	163	6	386	M16	36	31	70	134	375	165	403	220	280	50	6	104
FXRT 170 - 63	MX	9.000	250	2700	100	130	500	188	6	460	M16	43	40	80	156	425	196	473	250	340	38	6	166
FXRT 200 - 63	MX	12.500	240	2100	110	155	555	188	6	516	M16	49	40	80	156	495	226	528	275	390	38	6	209
FXRT 240 - 63	MX	21.200	220	3000	185	710	630	210	8	630	M20	50	50	90	170	630	290	670	355	455	45	12	355
FXRT 260 - 63	LX	30.000	210	2500	205	750	670	223	8	755	M20	50	50	105	183	670	310	710	375	500	40	12	418
FXRT 290 - 70	LX	42.500	200	2500	230	850	755	243	8	755	M24	52	50	105	190	730	335	800	405	560	48	12	574
FXRT 310 - 96	LX	53.000	195	2100	240	900	900	293	10	800	M24	63	63	120	240	775	355	850	435	600	69	12	805

Keyway according to DIN 6885, page 1 • Tolerance of keyway width JS10. * Keyway according to DIN 6885, page 3 • Tolerance of keyway width JS10.

Z = Number of fastening holes for screws G (DIN EN ISO 4762) on pitch circle T. **Tolerance of keyway width JS10.

See page 69 for determination of selection torque. Other freewheel sizes upon request.